Microfluidic Encapsulation of Pickering Oil Microdroplets into Alginate Microgels for Lipophilic Compound Delivery

نویسندگان

  • Marquis Melanie
  • Mélanie Marquis
چکیده

Alginate microgels are widely used as delivery systems in food, cosmetics, and pharmaceutical industries for encapsulation and sustained release of hydrophilic compounds and cells. However, the encapsulation of lipophilic molecules inside these microgels remains a great challenge because of the complex oil-core matrix required. The present study describes an original two-step approach allowing the easy encapsulation of several oil microdroplets within alginate microgels. In the first step, stable oil microdroplets were formed by preparing an oil-in-water (O/W) Pickering emulsion. To stabilize this emulsion, we used two solid particles, namely the cotton cellulose nanocrystals (CNC) and calcium carbonate (CaCO3). It was observed that the surface of the oil microdroplets formed was totally covered by a CNC layer, whereas CaCO3 particles were adsorbed onto the cellulose layer. This solid CNC shell efficiently stabilized the oil microdroplets, preventing them from undesired coalescence. In the second step, oil microdroplets resulting from the Pickering emulsion were encapsulated within alginate microgels using microfluidics. Precisely, the outermost layer of oil microdroplets composed of CaCO3 particles was used to initiate alginate gelation inside the microfluidic device, following the internal gelation mode. The released Ca2+ ions induced the gel formation through physical cross-linking with alginate molecules. This innovative and easy to carry out two-step approach was successfully developed to fabricate monodisperse alginate microgels of 85 pm in diameter containing around 12 oil microdroplets of 15 mu m in diameter. These new oil-core alginate microgels represent an attractive system for encapsulation of lipophilic compounds such as vitamins, aroma compounds or anticancer drugs that could be applied in various domains including food, cosmetics, and medical applications.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Deterministic encapsulation of single cells in thin tunable microgels for niche modeling and therapeutic delivery

Existing techniques to encapsulate cells into microscale hydrogels generally yield high polymer-to-cell ratios and lack control over the hydrogel's mechanical properties. Here, we report a microfluidic-based method for encapsulating single cells in an approximately six-micrometre layer of alginate that increases the proportion of cell-containing microgels by a factor of ten, with encapsulation ...

متن کامل

Microfluidic fabrication of shape-tunable alginate microgels: effect of size and impact velocity.

We report on a capillary-based microfluidic platform for the fabrication of non-spherical sodium alginate microgels. The sodium alginate droplets were crosslinked off-chip in a mixture of barium acetate and glycerol solution. Novel morphologies such as tear drop, lamp-like, mushroom-like, double-dimpled and bowl-like microgels were fabricated by controlling the size, impact velocity (at the cro...

متن کامل

Retention and release of oil-in-water emulsions from filled hydrogel beads composed of calcium alginate: impact of emulsifier type and pH.

Delivery systems based on filled hydrogel particles (microgels) can be fabricated from natural food-grade lipids and biopolymers. The potential for controlling release characteristics by modulating the electrostatic interactions between emulsifier-coated lipid droplets and the biopolymer matrix within hydrogel particles was investigated. A multistage procedure was used to fabricate calcium algi...

متن کامل

Controllable generation and encapsulation of alginate fibers using droplet-based microfluidics.

Herein we demonstrate the segmentation of alginate solution streams to generate alginate fibers of precisely controllable lengths between 200 and 1000 μm. Moreover, we demonstrate the subsequent encapsulation of the formed fibers within pL-volume microdroplets, produced within the same microfluidic device, in a direct manner. Finally, we show immediate and complete on-chip gelation of alginate ...

متن کامل

Microfluidic Generation of Monodisperse, Structurally Homogeneous Alginate Microgels for Cell Encapsulation and 3D Cell Culture.

Monodisperse alginate microgels (10-50 μm) are created via droplet-based microfluidics by a novel crosslinking procedure. Ionic crosslinking of alginate is induced by release of chelated calcium ions. The process separates droplet formation and gelation reaction enabling excellent control over size and homogeneity under mild reaction conditions. Living mesenchymal stem cells are encapsulated an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016